Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.728
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Artigo em Inglês | LILACS | ID: biblio-1538056

RESUMO

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Assuntos
Folhas de Planta/química , Croton/química , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Estruturas Vegetais/metabolismo , Estruturas Vegetais/química , Folhas de Planta/metabolismo , Croton/metabolismo , Anti-Inflamatórios , Antioxidantes
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1538072

RESUMO

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Assuntos
Óleos Voláteis/química , Extratos Vegetais/química , Antioxidantes/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Flores/química , Equador , Antioxidantes/farmacologia
3.
Cureus ; 16(2): e55184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558717

RESUMO

INTRODUCTION: The primary objective of this study was to develop an environmentally friendly and efficient method for synthesizing zinc oxide (ZnO) nanoparticles (NPs), utilizing extracts from Allium sativum (garlic) plants, characterizing the synthesized ZnO NPs using various analytical techniques, and assessing their antibacterial and antioxidant properties. MATERIALS AND METHODS: The synthesis process involved utilizing extracts from garlic plants to create ZnO NPs. The NPs were subjected to comprehensive characterization through UV-visible (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Antibacterial properties were assessed against different microbial strains. In vitro antioxidant properties were evaluated through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. Bioactive compounds in the synthesized NPs were also identified. RESULTS: Analysis of the UV-vis spectrum confirmed the synthesis of ZnO NPs with an approximate size of 280 nm, as indicated by the absorption peak in the surface plasmon resonance band. FTIR spectroscopy revealed the presence of functional groups such as hydroxyl and carboxyl groups. SEM analysis determined the dimensions of the NPs to be around 11 nm. XRD patterns exhibited distinct Bragg reflections, confirming specific crystallographic planes. In vitro antioxidant assays demonstrated a reduction in absorbance at 517 nm and 734 nm, indicating antioxidant activity. Antibacterial testing revealed inhibition zones against Escherichia coli, Staphylococcus aureus, Streptococcus mutans,and Enterococcus faecalis. CONCLUSION: The study successfully synthesized ZnO NPs using an eco-friendly method with garlic plant extracts. Characterization techniques confirmed the structural and chemical properties of the NPs. The synthesized NPs exhibited antioxidant and antibacterial activities, showcasing their potential for various applications. The identification of bioactive compounds further contributes to the understanding of the biological properties of the synthesized NPs.

4.
Cureus ; 16(2): e55149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558739

RESUMO

Worldwide, diabetic nephropathy (DN) is a significant contributor to end-stage renal failure and chronic kidney disease. Probiotic supplementation has recently gained popularity as a potential nutritional therapy in several clinical trials aimed at improving renal function, inflammation, oxidative stress, dyslipidemia, glycemic control, and inflammation. However, they still need to undergo a thorough assessment of DN. It is crucial that the optimal dosage, duration, and combination of probiotic strains administered for the purpose of slowing down the advancement of DN be assessed. Based on the available publications, including relevant randomized controlled trials, systematic reviews, and meta-analysis from 2013-2023 from search engines like MEDLINE (PubMed), Scopus, and Web of Science, a literature review was generated using the keywords "gut microbiota," "gut microbiome," "diabetic kidney disease," "diabetic nephropathy," "probiotic," and "prebiotic." Multiple clinical trials focusing on probiotic administration techniques revealed changes in renal, glucose, and lipid biomarkers. Probiotic supplementation using Bifidobacterium bifidum, Lactobacillus acidophilus, and Streptococcus thermophilus for 12 weeks indicated a reduction in glycosylated hemoglobin, fasting blood glucose, and the microalbuminuria/creatinine ratio. Multispecies as well as single-species probiotic administration containing Lactobacillus, Bifidobacterium, and Streptococcus thermophilus spp. greater than 4*109 colony forming units (CFU)/day for 8-12 weeks in DN patients improves renal metabolic markers and reduces the progression of disease patterns. Optimal supplementation techniques of probiotics in conjunction with prebiotics and synbiotics in DN benefit glycaemic control, renal function, blood lipid profile, inflammation, and oxidative stress. Future randomized controlled trials supplementing specific probiotics coupled with prebiotics and synbiotics, with larger sample sizes and longer follow-up times, will generate more reliable findings for the impact of probiotic supplementation on DN.

5.
Food Chem X ; 22: 101299, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38559442

RESUMO

In current work, the effect of freezing (F), ultrasound (U), and freeze- ultrasound (FU) pretreatment on infrared combined with hot air impingement drying kinetics, cell ultrastructure, enzyme activity, and physicochemical properties of strawberry slices were explored. Results showed that FU pretreatment enhanced cell membrane permeability via forming micropores, altered water status by transforming bound water into free water and thus promoted moisture diffusivity and decreased drying time by 50% compared to the control group. FU pretreatment also extensively decreased pectin methylesterase enzyme activity and maintained quality. The contents of total phenols, anthocyanins, vitamin C, antioxidant activity, and a* value of dried strawberries pretreated by FU were extensively increased compared to the control group. U and FU pretreatments were beneficial for retaining aromatic components and organic sulfides according to e-nose analyses. The findings indicate that FU is a promising pretreatment technique as it enhances drying process and quality of strawberry slices.

6.
Food Chem X ; 22: 101292, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38559439

RESUMO

Polygonatum kingianum Coll. et (Hemsl) is a famous Chinese traditional food and medicine analogous plant. The rhizome of P. kingianum showed a decrease in levels of alkaloids, amino acids and derivatives, terpenoids, and an increase in organic acid and saccharides when it was processed by the traditional method of "Nine Cycles of Steaming and Sun-Drying". The relative content of 341 metabolites were increased (fold change, FC > 2; variable importance in projection, VIP > 1 and P-value, P < 0.05); while 456 metabolites were decreased (FC < 0.5, VIP > 1, and P < 0.05). The changes in chemical components result in a decrease in numb taste and an increase in sweetness. The increased antioxidant activity was observed in the processed samples. Together, this work has advanced the mechanism of reducing numb taste and enhancing antioxidant activity in the resource plants, such as P. kingianum, processed by the traditional method.

7.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Cureus ; 16(3): e55313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559549

RESUMO

Chronic heart failure (CHF) is a progressive multifactorial condition where the role of oxidative stress may have implications in the pathogenesis of the disease. Despite growing interest among researchers and clinicians, the limited, unorganized, and divergent findings regarding the association between oxidative stress and the progression of heart failure (HF) have prompted us to conduct this study. Drawing upon the evolving nature of this research domain, this study is one of the first of its kind to present a systematic and comprehensive overview of the existing evidence regarding the role of oxidative stress production in the progression of HF. This study systematically reviews peer-reviewed empirical studies published in English, particularly focusing on the association between oxidative stress and the progression of HF. Parameters, such as publication year, study design, population demographics (size, age, and gender), types of HF, and characterization of markers in the existing studies, were reviewed. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) procedure, a thorough search was conducted on PubMed, Cochrane, Embase, and Sage databases, without any restrictions on the publication dates of articles, which yielded a total of 1,808 records on the association of oxidative stress production with clinical outcomes in HF patients. The analysis of the content of 17 articles offered a robust observation of this phenomenon, providing insights into the levels of oxidative stress, antioxidant markers, and the enzymes involved in the production of reactive oxygen species (ROS), and their association with the progression and severity of HF. The findings highlighted various knowledge gaps and future research priorities are recommended in the areas of interest and unexplored areas.

9.
Heliyon ; 10(7): e28368, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560105

RESUMO

New plant proteins with high nutritional quality and biological properties are actively searched worldwide. Moringa oleifera seed protein isolate was prepared from defatted flour and hydrolyzed using four proteases namely trypsin, pepsin, Alcalase, and thermolysin. Then, antioxidant activity and cellular glucose uptake properties of the hydrolysates were assessed. A high degree of hydrolysis was obtained for hydrolysate prepared using trypsin (60.07%), followed by pepsin (57.14%), Alcalase (50.68%), and thermolysin (45.45%). Thermolysin hydrolysate was the most antioxidant efficient (IC50 0.15 and 0.74 mg/mL for 2,2'-azino-bis(acide 3-ethylbenzothiazoline-6-sulfonique) diammonium salt (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, respectively). Trypsin hydrolysate stimulated high glucose uptake by yeast cells (12.34-35.28%). In the absence of insulin, Alcalase hydrolysate was the most efficient for glucose uptake by the muscle, with the rate ranging from 22.03% to 29.93% after 30 min, then from 29.55% to 34.6% after 60 min. The four hydrolysates improved glucose uptake by the muscle in the presence of insulin with the rate ranging from 46.88% to 58.03% after 30 min, and from 50% to 58.18% after 60 min. Therefore, Moringa oleifera seed proteins could be used to prepare peptides as components of functional foods for the management of type-2 diabetes.

10.
Heliyon ; 10(7): e28359, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560145

RESUMO

Due to increasing concerns about environmental impact and toxicity, developing green and sustainable methods for nanoparticle synthesis is attracting significant interest. This work reports the successful green synthesis of silver (Ag), silver-titanium dioxide (Ag@TiO2), and silver-selenium dioxide (Ag@SeO2) nanoparticles (NPs) using Beta vulgaris L. extract. Characterization by XRD, SEM, TEM, and EDX confirmed the successful formation of uniformly distributed spherical NPs with controlled size (25 ± 4.9 nm) and desired elemental composition. All synthesized NPs and the B. vulgaris extract exhibited potent free radical scavenging activity, indicating significant antioxidant potential. However, Ag@SeO2 displayed lower hemocompatibility compared to other NPs, while Ag@SeO2 and the extract demonstrated reduced inflammation in a carrageenan-induced paw edema animal model. Interestingly, Ag@TiO2 and Ag@SeO2 exhibited strong antifungal activity against Rhizoctonia solani and Sclerotia sclerotium, as evidenced by TEM and FTIR analyses. Generally, the findings suggest that B. vulgaris-derived NPs possess diverse biological activities with potential applications in various fields such as medicine and agriculture. Ag@TiO2 and Ag@SeO2, in particular, warrant further investigation for their potential as novel bioactive agents.

11.
Heliyon ; 10(7): e28067, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560166

RESUMO

In this study, we investigated the ethanolic extraction of the leaves of a very common but little studied plant species, Elaeagnus x submacrophylla Servett. and the opportunity of generating an antioxidant ingredient. The phytochemical profile of an ethanolic extract is also described here using gas chromatography and ultra-performance liquid chromatography, both combined with mass spectrometry (GC-MS and UPLC-MS), highlighting the presence of flavonoids, saponins, triterpenoids and a set of volatile compounds. Through in vitro assays (DPPH, ABTS, ORAC), the free radical scavenging capacity of the ingredient was then investigated (from 0.25 to 1.75 mmol TE/g) and compared with well-known standard antioxidants (BHT, gallic acid, quercetin, Trolox and vitamin C). In addition, in cellulo antioxidant capacity was performed using mice fibroblasts, revealing an activity equivalent to 50 mg/L of quercetin when tested the ethanolic extract in the concentration range of 50-300 mg/L, suggesting a synergistic combination effect of the identified phytochemicals. These results support the use of Elaeagnus x submacrophylla as a source of antioxidant ingredients.

12.
Heliyon ; 10(7): e28456, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560209

RESUMO

High volume of postharvest materials including peels from citrus fruits is periodically generated, which contributes to environmental pollution. Investigating the chemical composition cum antioxidant property of these 'wastes' would be instructive in achieving value addition in the food and pharmaceutical value chain. On this premise, this study carried out phytochemical screening and antioxidant activity of three (3) commonly cultivated citrus varieties namely Citrus sinensis 'valencia', Citrus sinensis 'washinton' and Citrus sinensis 'thompson navel'. The peels were extracted using ethanol and hexane in a Soxhlet extractor and thereafter subjected to phytochemical and Gas Chromatography/Mass Spectrometry (GC/MS) analyses, ferric ion reducing antioxidant power (FRAP), hydrogen peroxide scavenging and cupric ion reducing antioxidant capacity (CUPRAC) assays to evaluate their antioxidant potentials. Results show that Citrus sinensis peel extracts contain alkaloids, flavonoids, phenols, phytosterols, diterpenes, tannins and glycosides. GC/MS analysis identified about 48 compounds in each extract; with the predominant bioactive compounds being limonene (16.5%), ascorbic acid (17.7%), stearic acid (26.3%), linalool (4.7%), linoleic acid (16.18%), palmitic acid (15.23%), pentadecyclic acid (1.1%). Ethanol and hexane extracts of Valencia exhibited higher FRAP (9.09 ± 0.13) and CUPRAC (2.04 ± 0.06) values while the ethanol extract of Ibadan sweet demonstrated greater hydrogen peroxide scavenging activity (1.39 ± 0.00). Citrus peels are rich in bioactive compounds with excellent antioxidant activity and may serve as potential sources of natural antioxidants for food products or pharmaceutical formulations.

13.
PeerJ ; 12: e17190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560461

RESUMO

Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.


Assuntos
Brassinosteroides , Esteroides Heterocíclicos , Estresse Fisiológico , Zea mays , Secas , Antioxidantes/farmacologia , Água/farmacologia
14.
Heliyon ; 10(6): e28396, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560692

RESUMO

Copper-based metal-organic frameworks (BDC-Cu MOFs) were synthesized via a casting approach using 1,4-benzene dicarboxylic (BDC) as organic ligand and their properties characterized. The obtained materials were then utilized to immobilize the α-amylase enzyme. The chemical composition and functional components of the synthesized support (BDC-Cu MOFs) were investigated with Fourier transform infrared spectroscopy (FTIR), the surface morphology was determined with scanning electron microscopy (SEM), and the elemental composition was established with energy dispersive X-ray (EDX) analyses. X-ray diffraction (XRD) was employed to analyze the crystallinity of the synthesized DBC-Cu MOFs. The zeta potentials of DBC-Cu MOFs and DBC-Cu MOFs@α-amylase were determined. The immobilized α-amylase demonstrated improved catalytic activity and reusability compared to the free form. Covalent attachment of the α-amylase to BDC-Cu provided an immobilization yield (IY%) of 81% and an activity yield (AY%) of 89%. The immobilized α-amylase showed high catalytic activity and 81% retention even after ten cycles. Storage at 4 °C for eight weeks resulted in a 78% activity retention rate for DBC-Cu MOFs@α-amylase and 49% retention for the free α-amylase. The optimum activity occurred at 60 °C for the immobilized form, whereas the free form showed optimal activity at 50 °C. The free and immobilized α-amylase demonstrated peak catalytic activities at pH 6.0. The maximum reaction velocities (Vmax) values were 0.61 U/mg of protein for free α-amylase and 0.37 U/mg of protein for BDC-Cu MOFs@α-amylase, while the Michaelis‒Menten affinity constants (Km) value was lower for the immobilized form (5.46 mM) than for the free form (11.67 mM). Treatments of maize flour and finger millet samples with free and immobilized α-amylase resulted in increased total phenolic contents. The enhanced antioxidant activities of the treated samples were demonstrated with decreased IC50 values in ABTS and DPPH assays. Overall, immobilization of α-amylase on BDC-Cu MOFs provided improved stability and catalytic activity and enhanced the antioxidant potentials of maize flour and finger millet.

15.
Front Chem ; 12: 1360719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562526

RESUMO

The process of developing of new drugs is greatly hampered by their inadequate physicochemical, pharmacokinetic, and intrinsic characteristics. In this regard, the selected chloro indolinone, (Z)-6-chloro-3-(2-chlorobenzylidene)indolin-2-one (C1), and nitro indolinone, (Z)-6-chloro-3-(2-nitrobenzylidene)indolin-2-one (C2), were subjected to SwissADME and density function theory (DFT) analysis. For compounds C1 and C2, the BOILED-Egg pharmacokinetic model predicted intestinal absorption, blood-brain barrier (BBB) penetration, and p-glycoprotein interaction. According to the physicochemical analysis, C1 has exceptional drug-like characteristics suitable for oral absorption. Despite only being substrates for some of the major CYP 450 isoforms, compounds C1 and C2 were anticipated to have strong plasma protein binding and efficient distribution and block these isoforms. The DFT study using the B3LYP/6-311G(d,p) approach with implicit water effects was performed to assess the structural features, electronic properties, and global reactivity parameters (GRP) of C1 and C2. The DFT results provided further support for other studies, implying that C2 is more water-soluble than C1 and that both compounds can form hydrogen bonds and (weak) dispersion interactions with other molecules, such as solvents and biomolecules. Furthermore, the GRP study suggested that C1 should be more stable and less reactive than C2. A concentration-dependent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was shown by both C1 and C2. In brief, this finding has provided a strong foundation to explore further the therapeutic potential of these molecules against a variety of human disorders.

16.
J Food Sci Technol ; 61(6): 1165-1179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562591

RESUMO

This research aims to predict the presence of marker compounds that differentiate tubruk brew from coffee beans with different postharvest processing. This research also aims to predict compounds correlating with antioxidant activity and sensory flavour attributes. This research used Kalosi-Enrekang Arabica coffee beans, which were processed with three different postharvest processing (honey, full-washed and natural), roasted at medium level, and brewed using the tubruk method. Each brew was analyzed for chemical profiles using LC-MS and GC-MS, antioxidant analysis using the DPPH IC50 and FRAP methods, and sensory analysis for flavour using the QDA and SCAA methods for cupping scores. OPLS-DA analysis revealed the presence of marker compounds from each brew, and the dried fruit flavour attribute was to be an inter-process marker. After that, OPLS analysis showed marker compounds that correlate to antioxidant activity and flavour attributes. Rhaponticin is thought to be one of the marker compounds in natural coffee brews and is one of the compounds that correlates to the antioxidant activity of the DPPH method (IC50); prunin is thought to be one of the marker compounds for full-washed coffee brews and is one of the compounds that correlates to the activity antioxidants of FRAP method. Triacetin, which is thought to be a marker compound in natural brewed coffee, correlates with fruity flavour. 3-acetylpyridine, as a marker in honey-brewed coffee, correlates with nutty flavour. Even though there are differences in dominant flavours, the cupping score shows the brew is categorized as a specialty. This research shows that different post-harvest processing processes influence the compound profile, antioxidant activity and flavour attributes of Tubruk brewed coffee. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05948-8.

17.
J Food Sci Technol ; 61(6): 1035-1052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562604

RESUMO

Native fruit trees have potential for use in the food and pharmaceutical industries, which is widely used in folk medicine. Guabiju, known as guabijuzeiro (Myrcianthes pungens (O. Berg) D. Legrand) is a perennial tree that belongs to the family Myrtaceae, occurring in Brazil from São Paulo to Rio Grande do Sul, and other countries like Uruguay, Bolivia, Paraguay and Argentina. This species demonstrates great commercial potential regarding the consumption of its fresh fruit or industrialized. Due to its importance is necessary to develop studies aimed at characterization (phenotypic, propagative, reproductive, chemical and nutritional), uses and applications. However, the available information has never been systematized and in this sense the objective of this review is to compile information about the species to guide further research. Regarding morphology, the guabijuzeiro is a semi-deciduous tree species, with propagation is carried out mainly through seeds and vegetative. Regarding reproductive aspects, there is a lack of studies that assess the mode of reproduction. The fruit can be consumed fresh or processed as ice cream, juice, freeze-dried or dehydrated. It is sweet and slightly acidic, low in calories, high in carbohydrates, essential fatty acids, calcium and potassium. Both the fruit, the seed and the leaves have high levels of bioactive compounds and high antioxidant capacity. The fruit pulp stands out for its carotenoids and phenolic compounds and the peel is rich in anthocyanins, especially in the mature phase, in addition to terpenoids. M. pungens has antimicrobial effects, gastroprotective activity and is promising in the prevention of neurodegenerative diseases and against the side effects of cisplatin, an anticancer agent. Finally, there is a need for further studies with this species, mainly in the characterization of the leaves, uses and applications of the fruit.

18.
Front Vet Sci ; 11: 1364589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562916

RESUMO

Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-cancer, lipid-lowering and immune-improving effects by up-regulating or down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic side effects. The application of lycopene in animal production has shown that it could improve livestock production performance, slaughter performance, immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, lycopene as a new type of feed additive, has broader application prospects in many antibiotic-forbidden environments. This article serves as a reference for the use of lycopene as a health feed additive in animal production by going over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-cancer, and application in animal production.

19.
Nat Prod Res ; : 1-5, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567709

RESUMO

Given the widespread and established use of Jasminum scandens (Retz) Vahl, a member of the Oleacea family, this study aimed to identify and characterise secondary metabolites derived from the plant, with the objective of evaluating their potential biological activities. Using chromatographic separations techniques based on molecular weight and polarity, various VLC fractions of the plant were purified. These fractions yielded seven compounds- 2-(4-hydroxyphenyl)-ethanol (1), 2-(4-hydroxy-3-methoxy-phenyl)-ethanol (2), 1-(4-hydroxy-3-methoxy-phenyl)-1,2,3-propanetriol (3), 1-(4-hydroxy-3,5-dimethoxy-phenyl)-1,2,3-propanetriol (4), lupeol (5), ß-sitosterol (6), and methyl linoleate (7), which have never been previously reported in this plant. Out of the seven identified compounds, compounds 3 and 4 had the greatest capacity to scavenge free radicals with IC50 values of 3.81 µg/ml and 4.08 µg/ml, respectively when compared to the standard Butylated Hydroxy Toluene (BHT) with IC50 value of 6.54 µg/ml.

20.
J Agric Food Chem ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567751

RESUMO

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA